
VOLUME 83, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 1 NOVEMBER 1999
Effect of Zero Point Phase Fluctuations on Josephson Tunneling
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In the presence of phase fluctuations the dc Josephson effect is modified and the supercurrent at
zero voltage is replaced by a peak at small but finite voltages. It is shown that at zero temperature
this peak is determined by two complementary expansions of finite radius of convergence. The
leading order expressions are related to results known from the regimes of Coulomb blockade and
of macroscopic quantum tunneling. The peak positions and the suppression of the critical current by
quantum fluctuations are discussed.
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The dc Josephson effect allows a Cooper pair current
to flow through a superconducting tunnel junction in the
absence of an external voltage. The current is determined
by the difference w of the condensate phases on the two
sides of the junction through I � Ic sin�w� and is limited
by the critical current Ic. While this feature in the current-
voltage characteristic has zero weight, it acquires a finite
width due to either thermal or quantum fluctuations of the
phase difference. Here, we analyze the role of quantum
fluctuations and concentrate on the Josephson peak at zero
temperature.

The finite capacitance C of a Josephson junction is
a source of fluctuations of the phase difference w and
thus of the broadening of the Josephson peak since the
charge Q on the capacitance is the conjugate variable to
w [1]. At finite voltage V , a current can flow only if the
tunneling Cooper pairs can loose their excess energy 2eV .
This energy can be transferred to the degrees of freedom
present in the electromagnetic environment of the junction
described by the impedance of the circuit. In order to
observe a peak in the current as a function of the voltage,
the Josephson junction needs to be voltage biased. This
has become possible experimentally only very recently
[2]. Since we are interested in the behavior close to the
ideal Josephson peak, typical voltages V are much smaller
than the gap voltage D�2e and quasiparticle excitations
can be neglected.

A minimal circuit displaying quantum fluctuations of
the phase is shown in Fig. 1 and may be described in
terms of the Hamiltonian [3],
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The first term corresponds to the charging energy and
introduces an energy scale Ec � 2e2�C. The second
term describes the tunneling of Cooper pairs through the
junction. The Josephson coupling energy EJ is related
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to the critical current by Ic � 2eEJ�h̄. The third term
describes the coupling of the junction to an external
impedance modeled by a set of LC circuits and also takes
into account an applied voltage V .

Summing the perturbative expansion in the Josephson
coupling to all orders, one finds the following for the
equilibrium Cooper pair current [4]:
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where the exponent in the integrand is given by
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The sums over zk and hk run over the values 61 with the
constraint

P2n21
k�0 zk � 0.

This result depends on the phase autocorrelation func-
tion in the absence of tunneling [3] which at zero tempera-
ture is given by
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It is entirely determined by the total impedance Zt�v� �
�ivC 1 1�Z�v��21 seen by the junction. In the follow-
ing, we assume a purely Ohmic external resistance R

FIG. 1. Josephson junction characterized by the Josephson
energy EJ and capacitance C coupled to an ideal voltage source
V via an external impedance.
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thereby neglecting features in the impedance, such as
resonances in a transmission line, which might lead to ad-
ditional structure in the I-V curve [5,6]. One then has

ReZt�v�
RQ

�
r

1 1 �v�vR�2 , (5)

where r � R�RQ with the resistance quantum RQ �
h�4e2. The total impedance is cut off at a frequency
vR � 1�RC due to the junction capacitance. For suffi-
ciently long times, the correlation function is given by
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where g � 0.5772 . . . is the Euler constant.
Introducing a dimensionless time 2eVt�h̄ and making

use of the constraint on the zk , one finds that for the corre-
lation function (6) each term of the perturbation series (2)
depends on the Josephson coupling only through the com-
bination �EJ�V 12r�2n. Therefore, the perturbative expan-
sion in EJ will finally lead to a power series in the applied
voltage V . This is a consequence of the special form of
the correlation function (4) at zero temperature.

It is instructive to first discuss the problem in several
limits where results are already available. We start with
the regime of classical phase diffusion which corresponds
to taking the limit r � 0. Writing the expansion (2) in
terms of a continued fraction [4], one obtains
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where Q�x� is the Heaviside step function. This corre-
sponds to the zero temperature limit of the result obtained
by Ivanchenko and Zil’berman [7]. The current-voltage
characteristic (7) starts with an Ohmic line and displays a
cusp at V � RIc. A further increase of the voltage results
in a decreasing current.

As discussed above, an expansion in the Josephson
coupling energy at r � 0 amounts to an expansion in
1�V . The series (2) corresponds to the Taylor expansion
of (7) given by
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This series has a finite radius of convergence and is
restricted to jV j . RIc. The limit of convergence just
coincides with the position of the cusp. Hence, we see
that for small r and low temperatures the expansion (2)
will converge only for sufficiently large voltages.

To examine this further, we now allow for finite r

and turn to the regime of charging effects where Ec ¿
EJ . Within the standard theory of environmental effects
on Coulomb blockade (CB) [3], tunneling is treated
perturbatively and the current-voltage characteristics are
obtained from the leading term (n � 1) of the series (2)
[8]. For an environment with an Ohmic low frequency
component, one finds a zero bias anomaly of the Cooper
3722
pair current [9],

I �
p1�2r

2G�r�G�r 1 1�2�
�pEJ�2

�h̄vReg�2r

V
R

�eV �2r22. (9)

While for r . 1 this result describes the suppression of
the current by the Coulomb blockade effect, for r , 1
it corresponds to a divergent zero bias conductance.
One might hope that higher order terms regularize the
divergence, but the discussion of the classical phase
diffusion limit suggests that for r , 1 the series is
divergent for small V . We will show below that this is
indeed the case.

Now, for small r and small voltages, corrections to
the linear part of the current-voltage characteristic (7)
arise from macroscopic quantum tunneling (MQT). In
this regime the Josephson junction is mostly in its zero
voltage state and the voltage drop occurs at the resistor.
Occasionally, a phase slip will cause a finite voltage
across the junction leading on average to a finite dc
contribution. In the overdamped limit 2p2r2EJ ø Ec,
the current-voltage characteristic is given by [10]
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Note that the zero bias differential conductance goes to
zero for r , 1 where we found a divergence within
CB theory. On the other hand, the zero bias differential
conductance of (10) diverges for r . 1.

In order to reconcile these findings we make use of
the analogy between a Josephson junction and a damped
particle in a periodic potential. Schmid [11] has noted
that the regions of small and large r are related by a
self-duality of the model. Further progress [12,13] in the
calculation of the mobility of the damped particle has been
based on the thermodynamic Bethe ansatz [14]. Duality
has also been exploited in the context of the fractional
quantum Hall effect [12,15].

It should be emphasized that self-duality relies on
strictly Ohmic damping. In contrast, the spectrum (5)
has a cutoff frequency vR . This does not spoil duality
in the long-time limit of the correlation function (6)
where the dependence on vR can be absorbed in an
effective voltage scale introduced below. The long-time
limit restricts us to small voltages with eV ø h̄vR or
equivalently V�RIc ø Ec�p2r2EJ . For the typical case
of small environmental impedances, voltages of interest
are of order RIc, and then a rather wide range of ratios
Ec�EJ is allowed. Below we will show how the I-V
curve can be extended beyond the voltage limit imposed
by the strictly Ohmic approximation.

As a consequence of duality, the current-voltage char-
acteristics can be obtained from an integral representation
[13,16] which implies two complementary expansions de-
scribing the zero temperature behavior. In the scaling
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limit the CB series (2) takes the form
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On the other hand, the MQT series, with the leading order
terms (10), reads
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The coefficients of these expansions are determined by
duality and given by
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and the voltage scale is set by
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The two expansions (11) and (12) have a finite radius of
convergence which can be expressed in terms of a critical
voltage

Vc � V0�j1 2 rjrr��12r��1�2. (15)

For r , 1 the series (11) converges for V . Vc and thus
is a large voltage expansion, as discussed above, while
the series (12) converges for low voltages V , Vc. The
role of the expansions is interchanged above r � 1 where
(11) yields a low voltage expansion while (12) determines
the large voltage behavior. The situation is illustrated
in Fig. 2 where on the right side it is indicated which
expansion converges on which side of the curves.

As we have already seen for the case r � 0, the
current-voltage characteristic displays a peak. This is still
true for finite r as seen from Fig. 3 where we present I-V
curves for various values of r. Here, we show the current
as a function of the voltage VJ across the Josephson
junction which is related to the externally applied voltage
by VJ � V 2 RI . As can be seen from the figure, for
finite external impedance, the I-V curve corresponds to a

FIG. 2. Range of convergence of the two expansions (11) and
(12) for �eg�p2� �Ec�EJ � � 0.5, 1, and 2 (dotted, full, and
dashed line, respectively). Below the horizontal dashed line
r � 1, the series (11) converges to the right of the curves,
while above r , 1 it converges to their left. The opposite
holds for the series (12).
peak of finite width and a maximum current suppressed
with respect to the critical current in the absence of
fluctuations. As r is decreased, the peak narrows and
the usual Cooper pair current at zero voltage builds up.

Because of the complicated form of the expansions (11)
and (12), an analytic determination of the position and
height of the peak in the current-voltage characteristics is,
in general, not possible. However, it turns out that to a
very good approximation the peak position is given by the
critical voltage (15). The quality of this approximation
can be seen from Fig. 4 where we compare it (dashed
lines) with the peak positions determined numerically
(full lines). The lines have been restricted to values
of r for which eVmax # 10h̄vR in order to ensure
the applicability of the theory. Likewise, the maximum
current can quite reliably be estimated by Imax � Vc�R.
For more precise results, a numerical evaluation of (11)
and (12) is required which does not present special
problems.

As already emphasized, the range of validity of the
expansions (11) and (12) is restricted by the assumption
of strictly Ohmic damping. However, the current-voltage
characteristics can be extended to larger voltages if CB
theory yields a good description at the limit of validity.
One may then continue the I-V curve to larger voltages
by using the result of CB theory with the full frequency-
dependent impedance (5).

To illustrate this point, we consider the case r � 1�2
which for strictly Ohmic damping allows for an exact
solution [17,18]. Summing up the two expansions (11)
and (12), one finds in both cases
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Obviously, this result no longer describes a peak structure
as was the case for r , 1�2. This is, however, an
artifact of the assumption of Ohmic damping. For r �
1�2, the plateau value of (16) just corresponds to the
value (9) given by CB theory. Beyond the validity of

FIG. 3. Zero temperature Cooper pair current-voltage charac-
teristics for �eg�p2� �Ec�EJ � � 1 and r � 0.001, 0.01, 0.05,
and 0.1 shown as full, dotted, dashed, and dash-dotted line,
respectively.
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FIG. 4. Comparison of peak positions (full lines) and the
critical voltage (15) for �eg�p2� �Ec�EJ � � 0.01, 0.1, 1, 10,
and 100 increasing from the upper to the lower curves. Results
are shown only for values of r which satisfy eVmax # 10h̄vR .

the expansions (11) and (12), one may thus use the
cutoff-dependent leading order term of the series (2)
which describes the decrease of the current for larger
voltages and leads again to a peak in the I-V curve. For
Ec ¿ EJ , (16) reaches its plateau value for very small
voltages. Then, CB theory fails only for voltages below
�EJ�Ec�RIc. Quite generally, for r , 1 and Ec ¿ EJ ,
the result of CB theory with the exact impedance can
be employed except for small voltages. There, however,
the strictly Ohmic approximation is appropriate and the
results discussed above can be used.

For r . 1, CB theory describes the low voltage
behavior. For example, for r � 2, the case dual to
r � 1�2, one finds
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which agrees with (9) to leading order in V . This result
for strictly Ohmic damping diverges for large V but is in
fact regularized by the cutoff in the impedance. Thus, for
r . 1 and Ec ¿ EJ , the entire peak in the I-V curve is
determined by CB theory.

In conclusion, we have determined the shape of the
Josephson current peak in the presence of quantum fluc-
tuations. We have shown that the low voltage behavior
can be determined within the approximation of a self-dual
model with strictly Ohmic impedance. The results of the
dual model have been connected with the phenomena of
Coulomb blockade and macroscopic quantum tunneling.
This allows for the calculation of the I-V curve for ex-
3724
perimentally relevant frequency-dependent impedances in
a large range of parameters accessible by state-of-the-art
technology.
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